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Numerical computations are employed to study the phenomenon of oscillatory forcing
of flow through porous media. The Galerkin finite element method is used to solve the
time-dependent Navier–Stokes equations to determine the unsteady velocity field and
the mean flow rate subject to the combined action of a mean pressure gradient and
an oscillatory body force. With strong forcing in the form of sinusoidal oscillations,
the mean flow rate may be reduced to 40% of its unforced steady-state value. The
effectiveness of the oscillatory forcing is a strong function of the dimensionless forcing
level, which is inversely proportional to the square of the fluid viscosity. For a porous
medium occupied by two fluids with disparate viscosities, oscillatory forcing may be
used to reduce the flow rate of the less viscous fluid, with negligible effect on the
more viscous fluid. The temporal waveform of the oscillatory forcing function has a
significant impact on the effectiveness of this technique. A spike/plateau waveform is
found to be much more efficient than a simple sinusoidal profile. With strong forcing,
the spike waveform can induce a mean axial flow in the absence of a mean pressure
gradient. In the presence of a mean pressure gradient, the spike waveform may be
employed to reverse the direction of flow and drive a fluid against the direction of
the mean pressure gradient. Owing to the viscosity dependence of the dimensionless
forcing level, this mechanism may be employed as an oscillatory filter to separate
two fluids of different viscosities, driving them in opposite directions in the porous
medium. Possible applications of these mechanisms in enhanced oil recovery processes
are discussed.

1. Introduction
In Part 1 (Graham & Higdon 2002), we discussed the concept of oscillatory forcing

for enhanced transport of single-phase fluids flowing through porous media. We
studied the steady flow behaviour as a function of Reynolds number for two simple
geometrical models consisting of constricted channels and periodic arrays of circular
cylinders. For steady flows, we showed that inertial forces play a critical role in
determining the flow resistance and introduce a nonlinear dependence between the
flow rate and applied forcing level.

Here, in Part 2, our goal is to conduct a detailed study of the unsteady flows
associated with oscillatory forcing of porous media. In Part 1, we briefly discussed
methods by which the oscillatory forcing might be introduced into the porous medium.
In a manufacturing setting these methods might include mechanical oscillation of the
entire medium or oscillatory motion associated with a travelling wave induced by
mechanically driven oscillators or ultrasonic transducers. When the porous medium
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is of large extent, such as in a petroleum reservoir, the oscillatory forcing must be
introduced by wave propagation through the medium.

The propagation of acoustic waves in fluid-saturated porous media has been the
subject of much study in the literature dating from the early work of Biot (1956a, b).
Chapman & Higdon (1992, 1994) present a review of recent work covering the theory
for the dynamics of both the fluid and solid phases. We assume that the porous
medium is a porous elastic solid in which a travelling acoustic wave is introduced
by external stimulus. For acoustic wavelengths which are large compared to the
characteristic pore size, the coupling of the fluid dynamics and the solid mechanics is
significantly simplified. The long-distance wave propagation occurs primarily through
the elastic deformation in the solid phase, while the fluid motion acts as a relatively
short-range damping force. The acoustic wave induces a large-scale motion of the solid
phase which provides an accelerating reference frame for the microscopic fluid motion.
On the microscopic scale, asymptotic analysis shows that fluid-phase compressibility
effects are negligible, and the flow is incompressible (Burridge & Keller 1981). For
the fluid motion on this scale, the governing equations reduce to those for an
incompressible fluid flowing through a rigid porous medium with an oscillatory
body force accounting for the action of the accelerating reference frame. With this
background, we infer that the effects of acoustic stimulation on porous media may
be studied by considering pore-scale fluid flows subject to the simultaneous action of
a mean pressure gradient and an oscillatory body force. The mean pressure gradient
arises from the pumping action or constant pressure head in the system, while the
oscillatory body force arises from the acoustic stimulation.

In our study, we adopt simple geometric models for the porous microstructure; in
particular, we consider the two-dimensional constricted channels and cylinder arrays
introduced in Part 1. A number of prior studies have been devoted to oscillatory flow
in constricted channels with geometry similar to the models employed here. Sobey
and coworkers (Sobey 1980; Stephanoff, Sobey & Bellhouse 1980) conducted a com-
putational and experimental study of oscillatory flow in two-dimensional channels
to investigate the high rates of convective mass transfer arising in such flows. They
showed that large vortices develop in the expanded part of the channel and provide
the strong transverse mixing required for efficient mass transfer. Ralph (1986) stud-
ied oscillatory flow in axisymmetric constricted tubes and found a number of flow
patterns similar to those shown by Sobey. In addition, Ralph studied a previously
neglected range of Strouhal numbers and discovered a new class of asynchronous
flows which did not match the time periodicity of the oscillatory driving force. In
a similar study, Roberts & Mackley (1996) considered flow through baffled chan-
nels and showed that initially symmetric time-periodic solutions become asymmetric
time-aperiodic and eventually chaotic as the oscillatory Reynolds number increases.
Nishimura (1995) performed calculations on asymmetric channels and showed vor-
tex formation and mass transfer enhancement similar to that found in symmetric
channels.

While the researchers above have focused on the flow morphology in oscillatory
flow, there has been relatively little study of the relationship between the flow rate
and the magnitude of the oscillatory driving force. In the absence of nonlinear
inertial effects, the flow is governed by the unsteady Stokes equations, and there
is a linear relationship between the flow rate and pressure gradient. The complex-
valued coefficient of proportionality is a frequency-dependent quantity known as the
dynamic permeability. Chapman & Higdon (1992) give an extensive review of the
literature on dynamic permeability and present detailed computational results for
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three-dimensional models of porous media. Owing to the linearity of the unsteady
Stokes regime, however, the fluid velocity is strictly oscillatory, and the oscillatory
pressure gradient has no effect on the mean flow.

On reviewing the extensive research on flow in porous media, we find no work
which directly examines the effect of oscillatory forcing on the mean flow rate.
Previous efforts have been limited to unsteady Stokes flow or to studies of the flow
patterns in oscillatory motion. In the present paper, we examine the flow fields arising
in response to the simultaneous action of a mean pressure gradient and an oscillatory
driving force. Our goal is to investigate the physical mechanisms responsible for
enhanced transport in oscillatory forcing of flow in porous media. In pursuit of
this goal, we present an extensive series of results based on unsteady solutions of
the time-dependent Navier–Stokes equations. We show that the introduction of an
oscillatory pressure force may act either to enhance or to retard the mean flow rate.
We conduct a parametric study on the influence of the oscillatory pressure forces
and determine the effects of the amplitude, frequency and temporal waveform of the
oscillatory driving force.

2. Problem description and numerical methods
The two geometric models considered in this paper include sinusoidal constricted

channels and periodic lattices of circular cylinders. The geometry and parameters for
these models are defined in Part 1 and illustrated in figures 1 and 2 therein. The
constricted channels are parameterized by the wall slope ak and the dimensionless
gap size h/a. The cylinder arrays are parameterized by the ratio h/r where r is the
cylinder radius.

The governing equations for the fluid flow are the two-dimensional incompressible
Navier–Stokes equations together with the continuity equation:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P + µ∇2u+ b, (2.1)

∇ · u = 0. (2.2)

The boundary conditions are no slip on the boundary walls and periodicity at the
inlet and outlet, identical to those imposed in Part 1.

The body force in the Navier–Stokes equations is the sum of a mean component
Go and an oscillatory component Gω:

b = Go + Gω(t). (2.3)

The mean component represents the imposed mean pressure gradient (see Part 1),
and the oscillatory component represents either an oscillatory pressure gradient or
the action of an accelerating reference frame (e.g. acoustic stimulation). As in Part 1,
we non-dimensionalize all quantities with respect to the parameters h, ρ and ν, where
h is the gap size of the constriction, ρ is the fluid density and ν is the kinematic
viscosity. The dimensionless body forces are designated as Fo and Fω where

Fo = Goh
3/ρν2, Fω = Gωh

3/ρν2. (2.4)

As in the steady case, we break Fo and Fω into x- and y-components designated Fxo,
Fyo and Fxω , Fyω respectively. The frequency f of the forcing is non-dimensionalized
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with respect to viscosity and gap size yielding the dimensionless frequency

Ω = fh2/ν. (2.5)

The fluid flow rate or spatial average fluid velocity is defined as

U(t) =
1

2h

∫ h

−h
u(t) · n dS (2.6)

and its long-term time average is defined by

U = lim
t2→∞

1

t2 − t1
∫ t2

t1

U(t) dt. (2.7)

The dimensionless mean flow rate takes the form of a Reynolds number given by

Re =
Uh

ν
. (2.8)

In assessing the effects of oscillatory forcing on the average flow rate, we are most
interested in the dependence of Re on the parameters Fo, Fω , Ω, ak and h/a.

The unsteady partial differential equations (2.1) and (2.2) are solved by using the
Galerkin finite element method. All details with respect to the implementation and
discretization are as described in Part 1. For unsteady-state problems, the introduction
of the finite-element approximations for velocity and pressure leads to a system of
nonlinear differential algebraic equations. These equations are integrated in time to
obtain the velocity field at successive time steps. The integration is performed with
an explicit Adams–Bashforth prediction, followed by an implicit trapezoidal rule
correction, as described by Gresho, Lee & Sani (1980). We employ the adaptive
time step algorithm described by Gresho et al. with a relative error tolerance of
10−3. For flows with rapid flow changes, additional computations were performed to
confirm that the dynamics were adequately resolved. In all cases, the smaller time step
results were indistinguishable from those achieved with the base adaptive time step
algorithm. The velocity fields for the initial time steps were obtained from steady-state
calculations at Fxo.

3. Results
In Part 1, we characterized the flow patterns arising in steady flow, and determined

the mean flow rate as a function of the forcing level Fo. In that paper, we identified
three mechanisms by which oscillatory forcing might exploit the nonlinearity associ-
ated with inertial forces and achieve a net change in the mean flow rate. In this
paper, we present detailed results illustrating these mechanisms, and we investigate
the changes in the fluid flow resulting from the unsteady inertial forces.

We begin by considering flow in constricted channels for which the effective body
force has a single component bx(t) along the axis of the channel. For constant density
fluids, oscillations perpendicular to this axis induce linear hydrostatic pressure fields
with no effect on the fluid motion. For channels of fixed geometry, the three parameters
which affect the flow field are the magnitudes of the mean force and oscillatory driving
force and the dimensionless frequency Ω = fh2/ν. The frequency Ω represents the
ratio of the viscous time scale h2/ν to the time scale of the oscillation 1/f. When
Ω � 1, the driving force changes very slowly with time, and the instantaneous flow
field is exactly that predicted by steady-state calculations at the same level of forcing.
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(a) Re = –36.1 (b) Re = –3.13

(c) Re = 37.1 (d ) Re = 3.94

Figure 1. Instantaneous streamline patterns for strong oscillatory forcing Fxω = 20 in the presence
of a small mean pressure gradient Fxo = 0.25 at frequency Ω = 0.25. Images show flow at successive
instants in time during a cycle. The direction of the flow is indicated by the sign of the Reynolds
number; negative indicating right to left and positive indicating left to right.

For oscillatory flows in this quasi-steady regime, the mean flow rate may be calculated
directly from the steady state results of Part 1.† A major goal of the current effort
will be to compare the predictions of quasi-steady theory with the computed results
for unsteady flows and thereby to characterize the influence of the dimensionless
frequency Ω.

3.1. Sinusoidal forcing

For our first series of unsteady computations, we consider a simple sinusoidal time
dependence represented by a single Fourier mode with

bx(t) = Fxo + Fxω sin(2πft). (3.1)

For low forcing frequencies, the flow field is consistent with that predicted by the
steady-state results in Part 1. To illustrate the changes occurring at higher frequencies,
we choose Ω = 0.25 and present the flow patterns for several different forcing levels.
We consider a constricted channel with ak = 1 and h/a = 0.1 subject to a low level of
mean forcing Fxo = 0.25. Instantaneous streamline patterns at several points during
one cycle of forcing are shown in figure 1, for conditions where the oscillatory forcing
Fxω = 20 is much stronger than the mean forcing. For these conditions, the oscillatory
component of the forcing is strong enough to reverse the flow direction for part of

† For flows with bifurcations to multiple stable steady solutions, the quasi-steady analysis cannot
discern which branch the unsteady flow would select. In the present circumstances, all flows with
multiple stable solutions involve mirror image solutions and the flow rates are identical independent
of the branch selected. In more general geometries, this will not always be the case.
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(a) Re = 51.2 (b) Re = 7.87

(c) Re = –50.5 (d) Re = –7.75

Figure 2. Instantaneous streamline patterns for Fxω = 30, Fxo = 0.25, and Ω = 0.25 at successive
instants in time during a cycle. The direction of the flow is indicated by the sign of the Reynolds
number; negative indicating right to left and positive indicating left to right.

the cycle. Throughout the forcing cycle, flow patterns maintain symmetry and are
characterized by the presence of a vortex pair in the expanded part of the channel. As
the magnitude of the oscillatory forcing is increased to Fxω = 30, the flow structure
changes dramatically, as illustrated in figure 2. At this forcing level, the flow is
no longer symmetric, and the streamline patterns show significant variation from
one cycle to the next. The flow behaviour for Fxω = 30 is aperiodic and chaotic,
consistent with previous studies showing aperiodic motion at higher flow rates. Note
that the instantaneous streamline patterns for a single cycle (figure 2) are insufficient
to confirm the aperiodic nature of this flow. This conclusion is based on streamline
patterns taken over many cycles and is confirmed by the data for the average flow
rate discussed below. A further increase in the magnitude of the oscillatory forcing
to Fxω = 40 results in the flow patterns shown in figure 3. In this case, the flow
is asymmetric, and the streamline patterns from successive cycles are similar. The
variations in the velocity field are synchronized with the cycle of the oscillatory
driving force. Each of the streamline patterns in figure 3 bears a strong resemblance
to the stable asymmetric steady flows seen in Part 1. In each of these flows, a large
eddy occupies the centre of the channel, while a concentrated jet of fluid flows along
one of the channel walls. When the flow changes direction, the jet on one wall decays,
and a jet moving in the opposite direction forms on the opposing wall. With the
alternating jet positions, the large centre eddy maintains the same sense of rotation
throughout the entire cycle. It is this large mass of rotating fluid which imposes order
on the unsteady motion and ensures a consistent repetition of the flow pattern from
one cycle to the next.

In summary, we have seen two distinct temporally periodic flow patterns develop in
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(a) Re = 60.1 (b) Re = 15.5

(c) Re = –59.3 (d ) Re = –14.8

Figure 3. Instantaneous streamline patterns for Fxω = 40, Fxo = 0.25, and Ω = 0.25 at successive
instants in time during a cycle. The direction of the flow is indicated by the sign of the Reynolds
number; negative indicating right to left and positive indicating left to right.

the constricted channel. For forcing levels up to Fxω = 20, a symmetric flow develops
with vortex pairs propagating along the channel in opposite directions during different
parts of the cycle. For forcing levels of Fxω = 40 and larger, an asymmetric flow
develops with concentrated jets along the walls and a single large eddy in the centre
of the channel. At intermediate forcing levels such as Fxω = 30, the flow is unable
to sustain a consistent oscillation in either mode and a chaotic temporally aperiodic
motion ensues. In presenting these results, we note that the streamline patterns at the
forcing levels shown here are representative of the types of flow structure which may
develop. The transitions from one flow pattern to the next are governed by both the
forcing level and the frequency of the stimulation. We shall return to this issue in the
discussion of the frequency dependence later in this section.

Having illustrated the flow patterns observed for oscillatory flow, we now consider
the effect of the oscillatory component of forcing on the mean flow rate. One useful
measure of the average flow rate is the one-cycle average,

Re =
1

T

∫ t1+T

t1

Re(t) dt, (3.2)

where T is the period of the oscillatory forcing. This quantity has been calculated for
each cycle of the unsteady simulations, and results for several forcing levels are shown
in figure 4. For forcing levels of Fxo = 20 and Fxo = 40, the one-cycle average Re
experiences at most a brief initial fluctuation and rapidly settles down to a constant
value which is maintained for an indefinite period. These results are consistent with
the periodic time behaviour observed in the streamline plots for these forcing levels.
By contrast, the one-cycle averages for Fxω = 30 show large random fluctuations over
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Figure 4. Average Reynolds number computed over one cycle vs. time. Time is non-dimensionalized
with the period of the forcing. The conditions are Fxo = 0.25, Ω = 0.25, and (a) Fxω = 20,
(b) Fxω = 30, (c) Fxω = 40.

more than 100 cycles of oscillation with no sign of convergence to a constant value.
This type of time-aperiodic flow is similar to that observed by Roberts & Mackley
(1996) for flow through a baffled channel. The one-cycle averages in figure 4 show
no obvious sign of subharmonic periodicity; this fact can be confirmed by evaluating
the Fourier coefficients for the entire 100-period data set for Re(t). Figures 5(a)
and 5(b) show the magnitude of the Fourier coefficients as a function of frequency.
Figure 5(a) shows that the coefficient associated with the forcing frequency is much
larger than the other coefficients, which lie nearly on the horizontal axis in this figure.
The Fourier coefficients for the subharmonic frequencies are shown on an expanded
scale in figure 5(b). The subharmonic coefficients are much smaller in magnitude than
the coefficient associated with the forcing frequency, and they show broad coverage
over all frequencies with no evidence of a dominant oscillation mode at any distinct
subharmonic frequency. This conclusion is consistent with our earlier observations
of the streamline patterns, confirming the chaotic nature of the flow at intermediate
forcing levels.

When the Re based on one-cycle averages changes significantly over successive
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Figure 6. Long-time average flow rate as defined in equation (3.3) with t1 = 10 periods for
Fxo = 0.25, Ω = 0.25 and Fxω = 30.

cycles, a more meaningful flow measure is the long-term average defined by

Re = lim
t→∞

1

t− t1
∫ t

t1

Re(t) dt, (3.3)

where the integration begins at some finite value t1 to exclude the effects of initial
transients. Figure 6 shows the behaviour of the long-term average for the chaotic flow
at forcing level Fxω = 30. The fluctuations for this average are significantly smaller
than the variations in the one-cycle averages and converge to a steady mean. On a
computational note, we observe that the accurate calculation of the long-term average
for chaotic flows such as that shown in figure 6 require significantly longer simulations
than for the well-behaved periodic flows.
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Figure 7. Mean flow rate as a function of oscillatory forcing for Fxo = 0.25. The solid line
indicates quasi-steady analysis and the symbols are results of unsteady simulations at Ω = 0.25.

With a well-defined procedure for computing the average flow rate in unsteady
flows, we now consider the effect of the oscillatory forcing parameters on the mean flow
rate. We recall that predictions for the mean flow rate at low oscillation frequencies
may be obtained from steady-state data by employing a quasi-steady model. The
quasi-steady prediction is given by

Re =
1

T

∫ t1+T

t1

Reo(F) dt, (3.4)

where Reo(F) is the steady-state flow rate at the instantaneous forcing level F , and
F(t) is a prescribed function of time.

The mean flow rate subject to the action of a mean pressure gradient and an
oscillatory driving force is shown in figure 7. The flow rate is plotted as a function
of oscillatory forcing level with the circles showing results from unsteady simulations
and the solid line showing a quasi-steady prediction. The mean pressure gradient
Fxo = 0.25 and the frequency Ω = 0.25 are the same as for the streamline patterns
illustrated in figures 1–3. Both the unsteady calculations and the quasi-steady analysis
show that the average flow rate decreases as the oscillatory forcing level is increased,
with a substantial reduction when the oscillatory forcing Fxω is much stronger than
Fxo.

The explanation for this phenomenon is revealed by considering the nonlinear
effects of inertial forces as seen in the steady-state calculations. Figure 8 shows the
steady flow rate as a function of driving force for the stable solution branch of
the steady bifurcation diagram for this channel geometry. The dashed line shows the
extrapolated result from the low Reynolds number or Darcy flow regime. With an
oscillatory driving force in the quasi-steady limit, the flow will sample a range of
instantaneous forces as shown by the inset in the figure. For the Darcy flow line, the
velocity is related to the force by a constant coefficient C ,

U(t) = C[Fxo + Fxω sin(2πft)], (3.5)
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Figure 8. Illustration of quasi-steady analysis. The dotted line is the Stokes flow or Darcy’s law
prediction and the solid line is the computed steady flow result. The inset shows an example of an
unsteady forcing function.

and the average flow reduces to the steady value with no effect of the oscillatory
forcing. Owing to the inertial effects however, the actual flow rate falls below the
Darcy prediction, and the large forcing levels produce significantly less flow than
a linear extrapolation predicts. The flow deficit at large forcing is shown by the
shaded region between the two curves. When averaged over one cycle, the negative
part of the oscillatory cycle yields smaller driving forces and less inertial drag than
the positive part of the cycle. With a greater flow penalty in the positive part of
the cycle, the net effect is to reduce the mean flow rate below that achieved with a
steady mean forcing.

Further examination of the unsteady results in figure 7 shows the effect of the
transition from symmetric flows to asymmetric flows. For Fxω between 5 and 20,
the velocity field is symmetric, and the flow rate decreases sharply owing to the
inertial losses induced by the vortex pairs in the centre of the channel. This sharp
decrease ceases suddenly at Fxω = 30, corresponding to the transition between the
symmetric and asymmetric flow. For higher Fxω , the flow is asymmetric and Re
decreases less rapidly with increasing forcing level. In this regime, the flow patterns
closely match their steady-state counterparts, and the quasi-steady predictions show
excellent agreement with the unsteady simulations.

Given the dramatic reduction in mean flow rate produced by strong oscillatory
forcing, we see that oscillatory forcing may have a significant effect on transport
in fluid-saturated porous media. As one example, we examine the case of acoustic
stimulation for improving the efficiency of secondary oil recovery. Consider a reservoir
where extended patches are occupied by a single-phase fluid with separate regions
for the water phase and for the oil phase. In these regions, each phase is subject to
an oscillatory body force bxω which is proportional to the density of the fluid and
the acceleration of the solid matrix. While each phase experiences nearly the same
dimensional forcing level bxω , the dimensionless forcing level Fxω = bxωh

3/ρν2 is much
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Figure 9. Mean flow rate Re/Reo as a function of steady forcing level Fxo for a fixed level of
oscillatory forcing. The circles represent unsteady calculations for Fxω = 20 and Ω = 0.25 and solid
line represents quasi-steady analysis.

higher for the water phase owing to its smaller viscosity. One may choose a forcing
level bxω such that there is a significant reduction in Re/Reo for the water, while the
flow rate of the oil is essentially unchanged. In simple physical terms, the inertial
forces would play a significant role in the water phase while having negligible effect
in the more viscous oil phase. The net result of the process is to increase the speed of
the oil relative to the water, leading to a higher concentration of oil in the product
stream.

We have seen the effect of varying the level of oscillatory forcing while holding the
mean pressure gradient constant. To further characterize the effect of flow parameters
on the average flow rate, figure 9 shows the results of setting a fixed level of oscillatory
forcing and varying the strength of the steady forcing Fxo. In this figure, we observe
that a significant reduction in flow rate is achieved for arbitrarily small steady forcing
levels. As the level of steady forcing increases however, the effect of the oscillatory
forcing diminishes, and the mean flow rate approaches the steady-state value. At
equal levels of mean and oscillatory forcing, the mean flow rate is approximately 95%
of it steady-state value. Thus we find that the level of oscillatory forcing must be
significantly greater than the steady forcing level to have a meaningful effect. As with
our earlier results, we note that the quasi-steady analysis predicts the correct trends
for the unsteady calculations.

The final parameter to be considered in this section is the frequency of oscillation,
Ω. This parameter is significant, because the strength of the oscillatory driving force
bxω is proportional to the amplitude of the displacement wave and the square of its
frequency. The delivery of strong oscillatory forcing to porous media is facilitated if
high frequencies can be employed and proportionately smaller amplitudes may be
utilized. Figure 10 shows the flow rate as a function of the dimensionless frequency for
a system with strong oscillatory forcing. In this figure, we observe that the oscillatory
forcing produces a significant effect on the mean flow rate for frequencies in the range
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Figure 10. Mean flow rate Re/Reo as a function of frequency Ω for Fxo = 0.25 and Fxω = 20.
The dashed lines are described in the text.

0 6 Ω 6 0.50. Above this frequency range, the effect of the oscillatory forcing rapidly
diminishes, because the fluid velocity has insufficient time to respond to the imposed
oscillation. Further examination of figure 10 reveals a number of dramatic changes
in the flow rate over narrow frequency bands in the range Ω ≈ 0.1 and Ω ≈ 0.2. The
sudden change over a narrow frequency range is an interesting phenomenon, but it
has little consequence for real porous media. The frequency Ω is non-dimensionalized
with gap size h, and the phenomenon would thus occur only for gap sizes in a narrow
range. Real media have a wide distribution of pore and constriction sizes which would
minimize the appearance of these effects.

The overall frequency behaviour seen in figure 10 may be explained by considering
the relevant time scales in this problem. There are three characteristic time scales
associated with the unsteady flows driven by oscillatory forcing. The first is given by
the period of the oscillatory forcing 1/f. The second is the viscous diffusion time scale
h2/ν. The ratio of these scales gives our dimensionless frequency Ω. The third time
scale is the transient scale measuring the time required for a flow starting from one
forcing level (or rest) to reach a steady flow condition. During this transient, the flow
shows unsteady flow characteristics including vortex pair formation and propagation
similar to the streamlines shown in figure 1. This third scale is equal to the viscous
diffusion time scale in parallel flows, but is more complicated in the present geometry
owing to the vortex dynamics.

At very low forcing frequencies, the oscillatory time scale is much larger than both
the transient and viscous time scales, and the flow pattern develops in the form of
the steady-state solutions. The flow rate is as predicted by quasi-steady analysis and
is shown as the horizontal dashed line on figure 10. For very high frequencies when
the oscillatory time scale is much smaller than both the transient and viscous time
scales, the unsteady terms in the Navier–Stokes equations dominate, and the flow
character is governed by the linear unsteady Stokes equations. In this regime, the
oscillatory motion and the mean flow are decoupled owing to the linearity, and the
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modification of the mean flow goes to zero. The flow in the centre of the channel is
irrotational, while viscous effects and vorticity are confined to oscillatory boundary
layers on the channel walls. Chapman & Higdon (1992) discuss the relevant literature
on this regime.

The first modification of the flow owing to nonlinear inertial effects at high fre-
quency is the steady inertial streaming induced by Reynolds stresses. Rosenhead
(1963, section VII.10) gives a review of the classic literature on this phenomenon.
For geometries with fore–aft symmetry, inertial streaming induces a steady flow,
but symmetry dictates that the total volume flow rate is identically zero. The first
modification of the volume flow rate associated with nonlinear inertial effects enters
at third order. This modification arises from the Reynolds stresses generated by the
interaction of the steady inertial streaming field and the steady flow produced by the
mean pressure gradient. In dimensional terms, the oscillatory velocity in the channel
scales as uω ∼ Gω/(ρf) where Gω is the oscillatory body force. The steady inertial
streaming velocity scales as ku2

ω/f (Rosenhead 1963), while the steady flow associ-
ated with the mean pressure gradient Go scales as Goh

2/µ. With these estimates, the
Reynolds stress scales as kGo G

2
ωh

2/(ρf3µ). The Reynolds stress counters the effect of
the mean pressure gradient and reduces the total flow rate. The final expression for
the mean flow rate takes the form

Re = Reo

[
1− O

(
khF2

ω

Ω3

)]
. (3.6)

This expression is shown as the dashed line on figure 10 with the coefficient of the
Reynolds stress chosen such that curve passes through the data point at Ω = 3 which
is the highest frequency we have computed. The asymptotic theory shows that the
effects of acoustic forcing fall off as Ω−3 for high-frequency forcing. Numerical results
for the two highest frequencies computed confirm this scaling.

For frequencies which are intermediate between the two asymptotic regimes, the
transient time scale plays an important role. When the transient time scale is larger
than the oscillatory time scale, the flow has insufficient time to reach the steady-
state solutions. Instead, the streamlines retain their unsteady character with vortex
formation and propagation as shown in figure 1. At a certain critical frequency,
such as that seen in figure 10 (Ω = 0.1), the flow is poised at the brink of quasi-
steady behaviour where the oscillatory time scale is comparable to the transient
time scale. For such frequencies, the slight directional bias associated with the mean
flow may alter the flow patterns such that the forward and reverse motions show
different character. This phenomenon is illustrated by the streamline patterns shown
in figure 11 for a frequency Ω = 0.1. In particular, panel (e) (with positive forcing)
shows the formation of a concentrated jet of fluid across the channel analogous to
a steady flow solution. With negative forcing, no such jet appears, and the flow is
dominated by the vortex motion. The streamlines in this figure may be contrasted
with the symmetric vortex patterns shown in figure 1 for the same forcing level at
a frequency Ω = 0.25. A further confirmation of the directional asymmetry may be
obtained by examining the Fourier coefficients of the flow rate Re(t). For frequencies
above the critical frequency, the first few harmonics are in phase with the fundamental,
consistent with the fore–aft symmetry. For the frequencies at or very near the critical
frequency, the harmonics show a distinct phase shift compared with the fundamental,
yielding asymmetry in the total flow rate which is consistent with the inference drawn
from the streamline patterns.
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(a) Re = –15.9 (e) Re = 17.3

(b) Re = 21.0 ( f ) Re = –17.5

(g) Re = –41.1(c) Re = 41.6

(d) Re = 36.1 (h) Re = –35.6

Figure 11. Instantaneous streamline patterns for Fxω = 20, Fxo = 0.25 and Ω = 0.1 at successive
instants in time during a cycle. The direction of flow is indicated by the sign of the Reynolds
number; negative indication right to left and positive indicating left to right.

The effects of the transient time scale and the associated critical frequency may
be summarized as follows. For frequencies below the critical frequency, the flow is
quasi-steady with streamlines corresponding to steady-state solutions and flow rates
in good agreement with the quasi-steady theory. As the forcing frequency approaches
the critical frequency, there is a rapid change in flow rate as the mean flow induces
a directional asymmetry in the flow patterns. It is in this frequency range that one
observes the chaotic flow patterns discussed in reference to figure 4. For frequencies
above the critical frequency, the flow makes a transition to periodic flow patterns
characterized by vortex formation and propagation through the channel. In this range,
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Figure 12. Spike waveform.

the mean flow rate reaches its minimum value owing to the inertial losses associated
with the strong vortex motion. For frequencies well above the critical frequency, the
flow approaches the boundary layer regime described above, the effects of the acoustic
forcing fall off as Ω−3, and the mean flow rate returns to the undisturbed steady-state
value.

The results presented in this section have been limited to a single channel geometry
with slope ak = 1 and gap size h/a = 0.1. Additional calculations have been performed
for a wide range of geometric parameters as reported by Graham (1997). These
calculations confirm that the changes in the mean flow rate produced by oscillatory
forcing occur over a wide range of geometry, and therefore represent a promising
mechanism for enhancing transport processes in porous media.

3.2. Non-sinusoidal forcing

The temporal waveform associated with the oscillatory forcing function has a dramatic
effect on the mean flow rate through constricted channels. In previous work, we
studied several different non-sinusoidal waveforms (Graham 1997) and found that
the waveform with the largest impact on the mean flow rate is the spike/plateau
shown in figure 12. For this waveform, the average value of the force is zero and the
root-mean-square value Frms provides a convenient measure of the oscillatory forcing
level.

We begin our analysis by examining flows driven purely by the oscillatory spike
waveform in the absence of a mean pressure gradient. Figure 13 shows the average
flow rate as a function of oscillatory forcing level for both quasi-steady analysis and
full unsteady simulations. In this figure, we scale the average flow rate Re with the
flow rate corresponding to steady forcing at the same r.m.s. forcing level Frms. A new
feature of flows driven by the spike waveform is that a mean flow is induced even
when no mean forcing is imposed. The physical basis for this induced mean flow
may be understood by examining the form of the forcing function. During the short
spike interval ts where the reverse forcing increases to a high level, strong inertial
forces lead to a nonlinear increase in the flow resistance and a proportionally smaller
increase in flow rate. For the long interval tc with a small constant positive forcing
level, the lower forcing yields less flow resistance and a proportionately higher flow
rate. Averaging over one full cycle of the wave leads to a mean flow in the positive
direction, even though the average forcing is equal to zero. Next, we examine the
effect of the oscillation frequency Ω on the average flow rate. Figure 14 shows that
the overall frequency dependence for the spike waveform is qualitatively similar to
that for the sinusoidal waves studied earlier: over a sizeable range of low frequencies,
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Figure 13. Mean flow rate as a function of oscillatory forcing level. The dashed line is the
quasi-steady analysis for the spike waveform and the symbols are results from unsteady calculations
at Ω = 0.125.
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Figure 14. Mean flow rate as a function of frequency of oscillatory forcing for spike waveform

with Fxo = 0 and Frms = 20/
√

2.

large mean flow rates are induced; however the effect decreases as the frequency is
increased with negligible effects above Ω = 0.50.

With a clear picture of the impact of spike wave forcing in the absence of a mean
pressure gradient, we turn our attention to flows subject to the combined action of
oscillatory and mean forcing. Given that a mean flow may be induced solely by
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Figure 15. Mean flow rate as a function of the strength of the oscillatory forcing level for the spike
waveform. The symbols are results from unsteady calculations at Ω = 0.125 and the dashed lines
are the quasi-steady analysis. Results are presented for two levels of steady forcing Fxo.

oscillatory forcing, we expect a large increase in the mean flow rate when the mean
and oscillatory forcing act together and a large decrease when the two are opposed.
This trend is shown in figure 15, which shows results from unsteady simulations
at two different levels of steady forcing. The symbols are unsteady results and the
dashed lines are the quasi-steady predictions. On the right half of the figure, the
steady forcing and oscillatory forcing act together, while on the left half they are in
opposition. Focusing on the right-hand side, we see that the average flow rate is up to
three times higher with oscillatory forcing than with steady forcing alone. Turning our
attention to the left side, we see that the oscillatory forcing produces a sharp decrease
in flow rate. For sufficiently high levels, the oscillatory forcing actually reverses the
sense of the average flow and causes the fluid to flow against the direction of the
mean pressure gradient.

In summary, we find that oscillatory forcing with spike waveforms may produce
dramatic changes in the mean flow rate of fluids in porous media. As with the
sinusoidal forcing discussed previously, this form of oscillatory forcing might be
exploited in oil recovery operations or in other systems involving porous media. For
single-phase fluids, oscillatory forcing might be employed to increase the mean flow
rate, or it could be used as the sole means of inducing a mean flow. For two-fluid
systems, the oscillatory forcing could be utilized as an oscillatory filter inducing a
separation based on differences in fluid viscosity. In this mode, a spike waveform
with large Frms would be used to force the less viscous fluid to flow against the
direction of the mean pressure gradient. At the same time, the more viscous fluid
would experience a lower level of dimensionless forcing Frms and hence flow in the
direction of the mean forcing. This mechanism could be exploited in oil–water systems
encountered in secondary oil recovery to reduce or even reverse the flow rate of water
in the vicinity of the production wells. The end result would be a significant increase
in the concentration of oil in the product streams.
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Figure 16. Mean flow rate as a function of oscillatory forcing level for fixed steady forcing
Fxo = 0.25. The lines on the plot indicate quasi-steady analysis and the symbols are results of
unsteady simulations at Ω = 0.25.

3.3. Cross-flow forcing

Our previous analysis of oscillatory forcing has been restricted to the case of oscil-
lations along the same axis as the mean forcing. This restriction is reasonable for
the constricted channel model, because the impermeable top and bottom boundaries
eliminate any influence of transverse forcing on the fluid flow field. Transverse body
forces act solely to induce a hydrostatic pressure variation in the fluid. To investi-
gate the effects of oscillatory forcing in a more general system, we consider periodic
cylinder arrays with cross-flow forcing, where the axis of the oscillatory forcing is
normal to the direction of mean forcing. In this system, we shall focus our attention
on temporal waveforms restricted to simple sinusoidal profiles. Before presenting the
results for cross-flow forcing, we briefly examine the case of parallel forcing to verify
that the flow behaviour observed for constricted channels carries over to the cylinder
array model. Figure 16 shows that the constricted channels and cylinder arrays show
quite similar behaviour for the influence of the sinusoidal forcing. In each case, strong
oscillatory forcing leads to a marked reduction in the mean flow rate, with a somewhat
stronger influence in the case of the constricted channels.

Having verified that both models yield similar predictions for oscillatory forcing
parallel to the direction of mean forcing, we now examine the case of oscillatory forcing
normal to the direction of mean forcing. In figure 17, the solid lines show the quasi-
steady predictions for the flow rate in the x-direction as a function of the strength of
the oscillatory forcing in the y-direction, Fyω , for different levels of steady forcing Fxo.
For the curves with low levels of steady forcing, the oscillatory forcing has a profound
effect on the mean flow rate, but this effect lessens as the level of steady forcing is
increased. The basis for this dramatic increase in flow rate can be seen by examining
the bifurcation diagram for steady cross-forcing shown in figure 14 of Part 1. In that
figure, we showed that the strong cross-flow jets which develop at moderate Reynolds
number have a significant impact on the flow rate in the x-direction. To see if the
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Figure 17. Mean flow rate as a function of cross-flow oscillatory forcing level Fyω for several levels
of mean axial forcing Fxo.

quasi-steady predictions are borne out in the unsteady flows, we turn to the results
for unsteady simulations shown as the symbols in figure 17. We show results for two
different frequencies, with solid circles corresponding to Ω = 0.0025 and the open
circle representing Ω = 0.00025. The higher frequency results (solid circles) follow
the quasi-steady prediction quite closely until the oscillatory forcing reaches a level
of Fyω = 40, after which the flow rate drops sharply to a level close to its steady
value in the absence of oscillatory forcing. For the lower frequency (open circle), the
predictions of the quasi-steady theory remain valid to a higher level of oscillatory
forcing. We conclude that the maximum frequency for which quasi-steady predictions
are valid is a function of the oscillatory forcing level.

We may investigate the frequency dependence further by calculating the mean
flow rate as a function of frequency for a fixed level of oscillatory forcing. The
results are shown in figure 18. For the lowest frequencies, the average flow rate in
the x-direction is increased by more than a factor of 2; however, for slightly higher
frequencies (Ω > 0.01), the average flow rate decreases drastically and approaches the
value corresponding to steady forcing. At higher frequencies (0.04 6 Ω 6 0.05), the
cross-flow forcing reduces the flow rate below its steady forcing level, while for all
frequencies above Ω = 0.10, the cross-flow forcing has negligible effect on the mean
flow rate. The explanation for these trends may again be found by examining the
steady-flow results shown in Part 1. Recall that pure cross-flow forcing may lead to
a net flow in the x-direction, but the direction of that induced flow may be positive
or negative with equal likelihood. With oscillatory cross-flow forcing, the sense of
the asymmetric streamline patterns may alternate yielding either an enhancement
or reduction in the mean flow rate. This explains the different qualitative trends
observed at different frequencies. While the changes in flow behaviour at the different
frequencies may be of physical interest, an important result for practical application
is that there is negligible effect above a frequency of Ω = 0.10. Delivery of strong
oscillatory forcing to porous media at extremely low frequencies is difficult because
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Figure 18. Mean flow rate as a function of frequency for fixed level of cross-flow forcing Fyω = 20
and axial forcing level Fxo = 0.25.

it requires the creation of oscillations with extremely large displacements. Given
the uncertainty in the results and the difficulty in administering strong oscillatory
forcing, we conclude that cross-flow forcing is unlikely to provide a practical means
of enhanced transport in porous media.

4. Discussion
In the sections above, we have shown that inertial effects associated with oscillatory

forcing may have a profound effect on the mean flow rate in porous media. With
strong forcing and the appropriate waveform, the oscillatory forcing may act to either
increase or decrease the flow rate. Waveforms may be selected to drive the fluid
in the direction opposite to the mean pressure gradient, and two fluids of different
viscosity may even be driven in opposite directions. The principal question remaining
is whether these phenomena could be exploited in practice, or if the range of forcing
required to achieve significant inertial effects is beyond the limits of feasibility.

To answer these questions, we begin by considering conditions which might apply
in a typical oil reservoir. We assume that the porous medium is characterized by a
length scale h = 2× 10−5 m. The kinematic viscosity of water is roughly 10−6 m2 s−1.
With these values, we place an upper limit on the frequency of f = 1000 Hz which
yields a dimensionless frequency Ω = 0.4. For frequencies of this level and below, the
acoustic forcing will have significant effect if the forcing is of sufficient magnitude. For
a given transducer operating at a frequency f with displacement d, the acceleration is
4π2df2 and the acoustic body force is Gω = 4π2ρdf2. The dimensionless force is given
by

Fω = 4π2f2dh3/ν2. (4.1)

For frequencies in the range of 1000 Hz, one may employ metal transducers using a
magnetostrictive metal alloy such as Terfenol-Dr. Standard transducers of this type
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are available from commercial vendors with operating ranges of 0 to 2500 Hz and
displacements as large as 70 µm. Note that metallic transducers of this type do not
need to be operated at their natural frequencies, which typically fall in the range
2–6 kHz. Choosing a typical displacement d = 30 µm, we find that such a transducer
can produce an acoustic forcing level of approximately Fω = 9. This level is well
within the range of significant acoustic enhancement for both the sinusoidal and
spike waves. (Note that Frms = 0.203Fω for the spike waves considered here.)

While the displacement amplitude at the transducer is of sufficient magnitude, there
is of course significant decay in amplitude as the acoustic wave propagates through
the porous medium. The length scale for the decay rate will be a function of the size of
the driving unit and the material properties of the solid matrix. For a strong localized
effect utilizing the oscillatory filter principle, one might employ metallic transducers
located within a well. Alternatively for longer range effect, some researchers have
proposed using powerful surface generators. Frequencies of 1000 Hz and lower are
sufficiently small that large-scale mechanical oscillating equipment may be employed
with displacements and driving surfaces significantly larger than those achievable
with metallic transducers.

While our focus has been on the application of acoustic stimulation in oil reservoirs,
we note that flow in porous media is also encountered in numerous industrial
operations in the petrochemical industry. Examples include filtration, flow in packed
beds and mould filling with fibrous composites. In these operations, the porous
media are far more accessible, and the introduction of significant forcing levels
by mechanical oscillation or metallic transducers is easily achievable. As a brief
example, we consider the parameter values from above for gap size h = 2 × 10−5 m
and kinematic viscosity ν = 10−6 m2 s−1. We suppose that mechanical oscillation is
employed with a frequency of 100 Hz and a displacement of 10 cm. Significantly
higher values might be achieved by specialized equipment; however these values are
characteristic of mechanical equipment, e.g. an automobile engine. Substituting these
parameters into equation (4.1) yields a dimensionless force Fω = 316 which is far
greater than any force considered here. If one is interested in media with larger pore
sizes, equivalent oscillatory forcing levels can be achieved with significantly lower
frequencies or smaller displacements.

It is not our purpose here to evaluate the merits of competing technologies for
the design of industrial equipment. Our goal is to show that it is at least plausible
to construct devices which can generate significant Reynolds numbers and inertial
effects for flow in real porous media. With the range of forcing levels achieved by
these devices, oscillatory forcing may lead to significant modification of the flow rate
of single-phase fluids.

5. Conclusions
In this paper, we have demonstrated a number of mechanisms by which oscillatory

forcing might be employed to modify the transport rate of single-phase fluids in
porous media. These mechanisms may be exploited in multiphase systems when the
two fluid phases occupy separate regions of the porous medium with individual
patches of fluid covering areas significantly larger than the typical pore size. The
main conclusions of this paper are as follows:

(i) Oscillatory forcing of porous media modifies the fluid velocity field through the
action of an unsteady body force. All changes to the mean flow rate in single-phase
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Newtonian fluids depend upon nonlinear interactions arising from the inertial terms
in the Navier–Stokes equations.

(ii) Oscillatory forcing with sinusoidal waveforms decreases the average flow rate
when the forcing level is significantly larger than the mean pressure gradient. The
magnitude of the flow reduction increases as the dimensionless forcing level Frms
increases. The dimensionless forcing level is a function of the fluid viscosity, density
and the pore size.

(iii) The temporal waveform of the oscillatory forcing function has a dramatic
impact on the effectiveness of the oscillatory forcing. A spike waveform is found
to be significantly more efficient than a sinusoidal profile. The spike waveform may
be employed to drive a mean flow in the absence of a mean pressure gradient. In
combination with a mean pressure gradient, the spike wave can increase the mean
flow rate several fold. When the oscillatory forcing acts to oppose the mean pressure
gradient, the spike wave can reverse the flow direction and drive the fluid against the
mean pressure gradient.

(iv) The effects of oscillatory forcing on the mean flow rate are independent of
frequency for small values of the dimensionless frequency Ω. Oscillatory forcing
has negligible effect on the mean flow rate for dimensionless frequencies Ω > 1 for
sinusoidal forcing and for Ω > 0.5 for spike waveforms.

(v) When fluids of different viscosities are subjected to the same level of oscillatory
forcing, the fluid with the lower viscosity experiences a significantly higher level of
dimensionless forcing (∼ 1/ν2). Thus oscillatory forcing may be employed to modify
the flow rate of one fluid (water) while having negligible effect on the motion of a
more viscous fluid (oil).

(vi) Owing to the sensitivity to viscosity ratio, oscillatory forcing may be employed
to act as an acoustic filter whereby two fluids in a porous medium may be driven in
opposite directions based on differences in the fluid viscosity.

(vii) Cross-flow oscillatory forcing may be employed with the axis of the oscillatory
body force normal to the desired direction of mean flow; however, limitations on the
dimensionless frequency place severe practical constraints on this mode of operation.

Finally, we have identified a number of fluid dynamics mechanisms which might
provide an explanation for the enhanced transport rates observed in field test and
laboratory experiments on acoustic stimulation of secondary oil recovery. We cannot
determine if these are the primary mechanisms in actual field tests; however, we
can confirm that the hydrodynamics of Newtonian fluids provides one explanation
independent of other physio–chemical phenomena.
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